Measuring spatial polarization and inequality in cities using housing transaction big data

Jinhyung Lee^{1,3}, Harvey J. Miller^{1,3}, Nicholas B. Irwin² & Elena G. Irwin^{2,3}

¹⁾ Department of Geography

²⁾ Department of Agricultural, Environmental, and Development Economics

³⁾ Center for Urban and Regional Analysis (CURA)

The Ohio State University

The Ohio State University

Great Recession in the U.S.

- Economic earthquake
 - The U.S. labor market lost 8.4 million jobs

Recovery from recession

- Positive signs
 - Increase in GDP percent change
 - Urban revitalization

However, unequal distribution of benefits

: concentration of wealth and economic growth in small parts of city

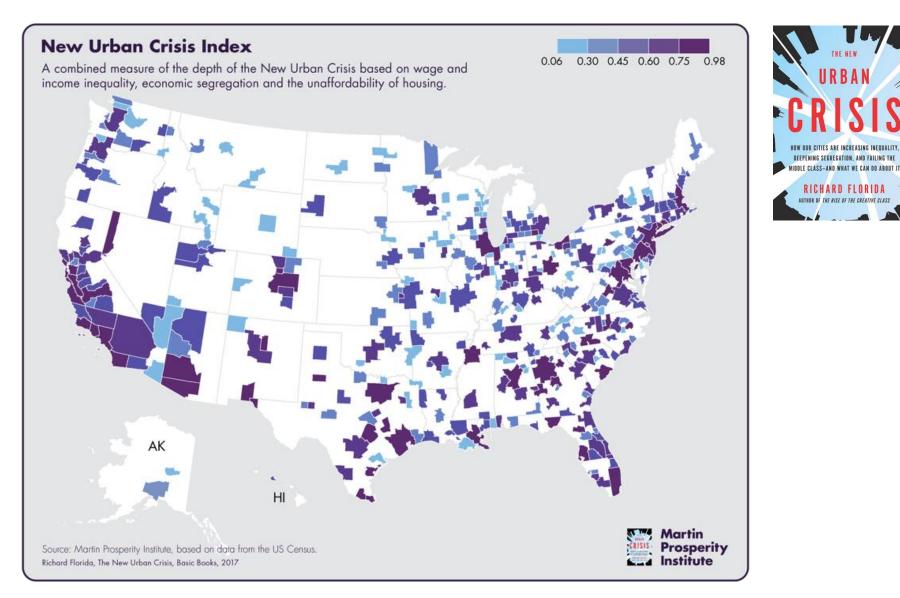
Possible outcomes

- 1. Deepening spatial polarization (clusters of the rich vs. poor)
- 2. Increasing inequality (e.g., income)

New Urban Crisis! (Florida, 2017)

Background

Geography of "New Urban Crisis"



How have polarization and inequality in cities evolved?

Research objectives

- 1. Investigate the evolution of spatial polarization in the U.S. cities
- 2. Investigate the evolution of inequality in the U.S cities
- Study area
 - State of Ohio: as a pilot study
 - Cities with different economic growth trajectories:
 - Columbus (high), Cincinnati (medium), Cleveland (low)
- Methods
 - Big data analysis using high-resolution housing transaction data
 - Geovisualization of polarization over time
 - Measuring spatial polarization (Moran's I) and inequality (Gini coefficient)

Data

Housing transaction data

- High spatial resolution: parcel-level
- Time range: 2000-2015
- Big data: # of observations in Columbus: 482,478
- City boundary: Urbanized Areas (UAs)

Data pre-processing

- 1. Removing housing transactions missing key characteristics
- 2. Removing outliers
 - Housing transactions less than \$10,000 and more than \$2.5 million are dropped

Methods

Housing price hedonic model

- Model specification
 - Estimate hedonic price models to measure location premium
 - Disaggregate price into attributes of house

 $lnP_{it} = \beta_0 + \beta_X X_i + \beta_Q Quarter_q + \epsilon_{it}$

- Natural log of price for house i in period t
- Function of a vector of house characteristics (X_i) and a quarter-by-year fixed effect (*Quarter_q*)
- Remaining unexplained variation \rightarrow Location premium

THE OHIO STATE UNIVERSITY

Variables	Cincinnati	Cleveland	Columbus
House size (sqft)	0.000564	0.000660	0.000573
House size squared	-4.36e-08	-4.33e-08	-3.28e-08
Parcel size (acres)	0.173	0.0948	0.170
Parcel size squared	-0.0189	-0.0126	-0.0178
Age	-0.000318	0.00276	-0.0109
Age squared	-5.04e-05	-0.000100	5.94e-05
Bedrooms	-0.0563	-0.0511	-0.152
Full bathrooms	0.135	0.0347	0.145
Stories	-0.0149	-0.106	-
Pool	0.0420	-0.162	0.0904
Finished basement	-0.0517	0.0763	-0.150
Fireplace	0.192	0.239	0.116
Central air conditioning	0.130	0.194	0.581
Garage	0.138	0.0700	-0.0417
Constant	10.38	10.70	10.60
R-squared	0.475	0.526	0.447
Observations	414,665	512,844	482,477
Quarter-year fixed effects	Yes	Yes	Yes

Note: LogPrice is the dependent variable. All variables are significant at 0.01 levels. Stories is not reported for 7 Columbus due to a lack of observations.

Methods

Geovisualization of polarization

- Spatial interpolation: Kriging
 - Creating surfaces of location premium over time
 - Ordinary Kriging / Exponential semivariogram model (lowest RMSE)

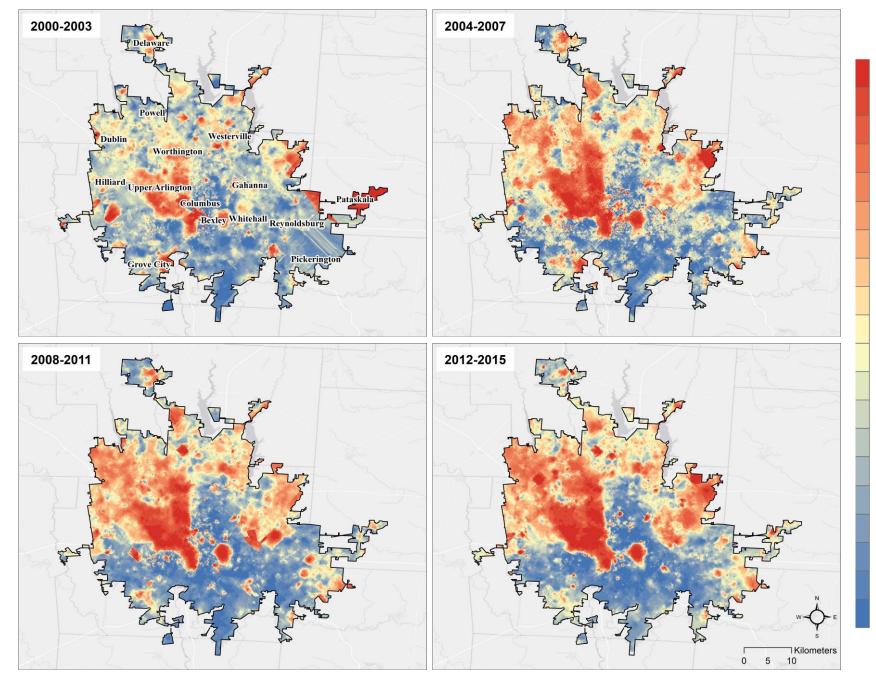
Measuring polarization and inequality

- Moran's I values
 - Measure spatial polarization of location premium
 - Unit of analysis: Census block group
- Gini coefficients
 - Measure inequality of location premium

Location premium surfaces

Columbus

Тор 5%



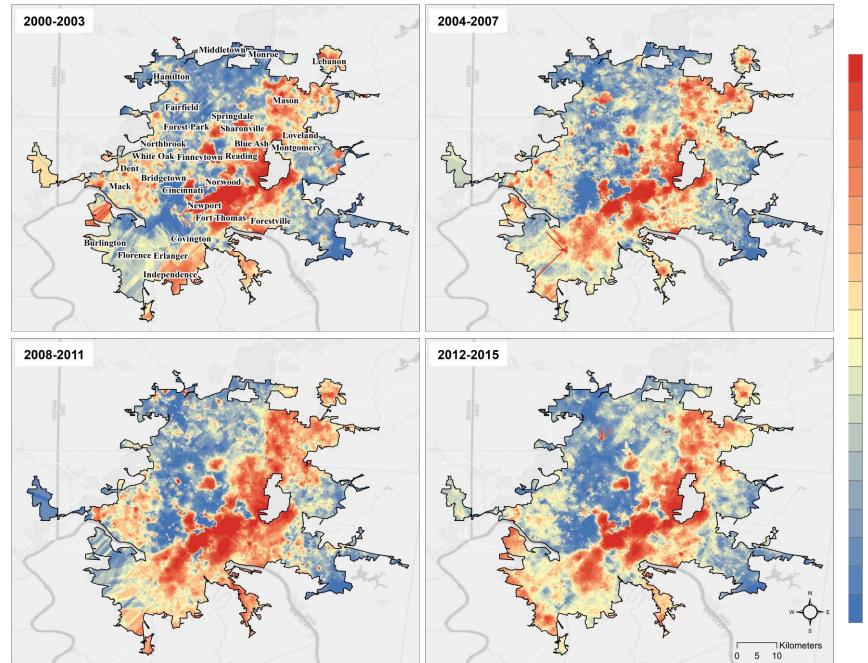
Bottom 5%

Location premium surfaces

Cincinnati

Тор

5%

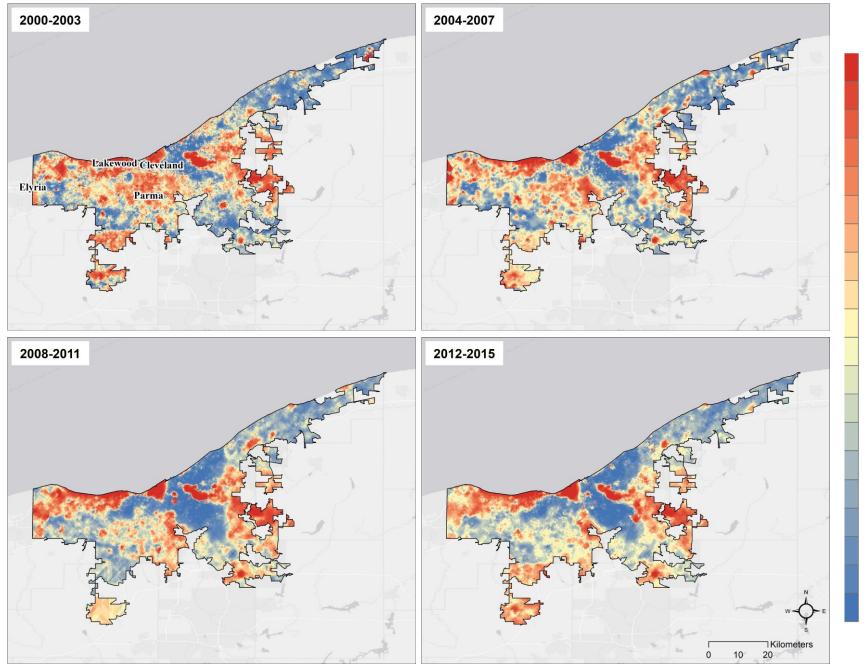


Bottom 5%

Location premium surfaces

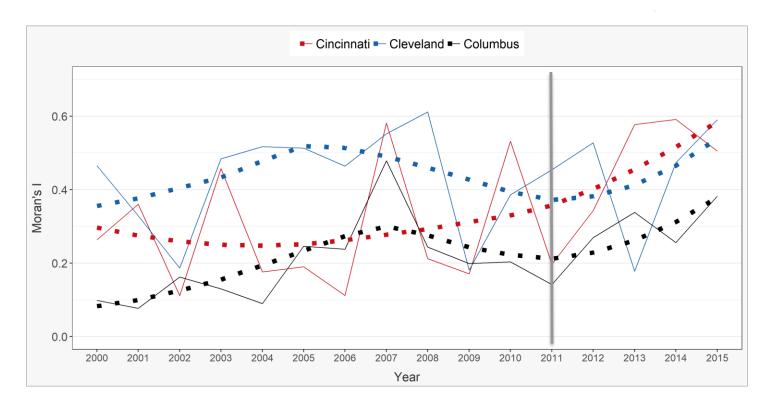
Cleveland

Тор 5%



Bottom 5% The Ohio State University

Measuring spatial polarization: Moran's I Results

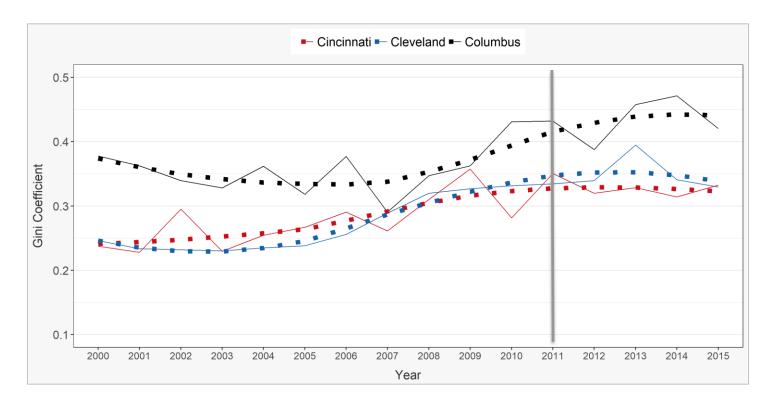


- Increasing spatial polarization trends
- Peak right before GR (2007), sharp drop after GR
- Growing spatial polarization trends during recovery (after 2011)

The Ohio State University

Results

Measuring inequality: Gini coefficient



- Similar to the Moran's I values, general increasing trends of inequality

Conclusion

- Three biggest Ohio cities are becoming more polarized!
 - Location premium surfaces: clustering of high (or low) values \rightarrow Divided cities
 - Spatial polarization: increasing trends in Moran's I values
 - Inequality: growing trends in Gini coefficients

Implications

- 1. Methodological: unprecedent high-resolution data
- 2. Empirical: evidence of growing polarization / inequality trends
- 3. Policy / planning: data-driven, map-based decision making

Next steps

- Scale up to the national level
- GWR against location premium \rightarrow Why does an area have high LP values?
- Predicting future polarization using GWR-TS (time series)

Thank you! Any Questions?

Contact

• Email: lee.7738@osu.edu (Jinhyung Lee) miller.81@osu.edu (Harvey J. Miller) irwin.114@osu.edu (Nicholas B. Irwin) irwin.78@osu.edu (Elena G. Irwin)